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This paper reports exact and numerical results on the shape dependence of the 
dielectric susceptibility of the one-component plasma (O.C.P.) in two dimen- 
sions. Some apparently conflicting predictions of phenomenological elec- 
trostatics and statistical mechanics are resolved. We prove indeed that, for a 
disk shaped two-dimensional one-component plasma at the particular tem- 
perature T0= q2(2KB) 1, the Clausius Mossotti relation is exactly fulfilled. It 
yields a value of the susceptibility which is twice that given by the second 
moment Stillinger-Lovett sum rule. Similar results are reported for the strip 
geometry. These discrepancies are explained in terms of shape dependent versus 
shape independent thermodynamic limits. We report also exact and numerical 
results on the size dependence of the dielectric susceptibility of the systems 
quoted above. 
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Let us consider an assembly of n species of charged particles confined in a 
domain A, of volume JAI, in the v-dimensional euclidean space Rv 
(v=2 ,  3). The system is assumed to be in thermal equilibrium at the 
inverse temperature/3 = 1/K~ T, where/3 is Boltzmann's constant. 

We know that much information regarding the equilibrium properties 
of such systems can be derived from the truncated charge-charge 
correlation function 

SA(X, y)= (Q(x) Q(y) ) - (Q(x) )(Q(y)  ) (1) 
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where x and y are v-dimensional vectors in A, Q(x) is the instantaneous 
charge density 

Q(x) = ~ q~jb(x - x~,j) ~ = 1, 2 ..... n (2) 
~,j j =  1, 2,..., N~ 

and where the bracket means ensemble average. 
In terms of the one- and two-particle correlation functions 

p~,A(X)=~ <a(X--X~j)) and p~ ,A(X ,y )=~  (6(X--X~j)(~(y--x~,k)) 
j j,k 

with j # k if e =/~ and of the truncated two-particle correlation functions 

P~T~,A(X, Y) = P~/LA( x, Y) -- P~,A(x) P/3,A(Y) 

SA(X, y) becomes 

2 SA(X, y)=~q~p~,A(X) g)(X y) + ~ r -- q~q~p~,A(X, Y) (3) 

We consider next the response of the system to an homogeneous exter- 
nal field Ei,ext applied in the Xl direction. According to the linear response 
theory, the dielectric susceptibility component IU,A takes the form 

where P1 is the 
system 

( < p 2 ) _  (p1 )2 )  (4) )~ 11,A = ]A]  

xl component of the instantaneous polarization of the 

P = ~. q~,jx~j = "al" dx xQ(x) (5) 
~,J 

Using Eqs. (5) and (1), Eq. (4) becomes 

JA dx + Xl ylSA(x, y) ZU,A 

which can also be written, using Eq. (3) 

)~ml,A =-~l dx dy xl yi q~p~,A(X) ~(x-- y) + 2 q~q~pr~,A(X, y) (6) 

For neutral systems, one can replace the product x ly l  by - � 8 9  2 in 
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the integrand of Eq. (6). In this case, the first term of )~II,A vanishes and 
Eq. (6) takes the form 

1 B ~q~q~fAdXdy(yl_Xl )2p~,A(r x,y) (7) Zll,A-- 2 fA] ~,B 

For isotropic systems, ( y l - - X l )  2 c a n  be replaced by (y-x)2/v. 
Equations (6) and (7) constitute the basic definitions of the susceptibility 
for finite systems. How to proceed to their thermodynamic limit will be dis- 
cussed later and will be one of the main objects of this paper. 

The interest of the dielectric susceptibility resides in the fact that it 
gives us information on the state of the system considered. This occurs via 
the relation between the susceptibility and the dielectric constant e of the 
system. We recall that a dielectric state is characterized by 0 < e 1 ~< 1 and 
a plasma state by e-1 = 0. According to the phenomenological laws of elec- 
trostatics the relation between the dielectric constant and the susceptibility 
is shape dependent. 

If A is a v-dimensional sphere immersed in a vacuum then the suscep- 
tibility is isotropic and its relation to the dielectric constant should be 
governed by the Clausius-Mossotti equation, (1'2) namely 

e i v=2 ,  3 (8) 
1 + ( ( v - l ) 2 )  2 ~ z D v  

Here the index D means disk or sphere. 
It follows from Eq. (8) that the value of the susceptibility, in the 

plasma state, Zf~, is given by 

V 
Zf) - v = 2, 3 (9) 

(v - 1) 2~ 

Besides the facts recalled above, there are results given by the 
statistical mechanics of infinite Coulomb systems related in particular to 
the perfect screening sum rules, valid for the plasma state. (3'4) 

Under the assumptions that (1) the state of the finite system converges 
to a state of the infinite system defined by correlation functions p~(x), 
p~(x, y), which are stationnary solutions of the BBGKY hierarchy with 
Maxwellian velocity distribution and that (2) pr~(x, y) decays faster than 
Fx-Yl (v+2) then, it is proved that the susceptibility tensor is isotropic 
and is given by the second moment Stillinger-Lovett sum rule 

ZsL= --~vv fl ~ q~q~ JR dr r2pfB(r)-- (v--1) 27c (10) 
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Notice that in the proof of Refs. 3 and 4, the thermodynamic limit has 
been taken for the integrand first and then for the integral. This sum rule 
tells us that, in a perfect conductor, a local excess charge is shielded by a 
quadrupole free cloud of opposite charge. 

We notice at this point that )~f) of Eq. (9) is v times P ZsL of Eq. (10)! 
To resolve this contradiction it appeared to us imperative to calculate 

Z11,A explicitly for a given model and to proceed to the thermodynamic 
limit in a way preserving the shape of the system. 

The model considered here is the two-dimensional one-component 
plasma (O.C.P.), which consists of N identical particles of charge q embed- 
ded in a uniform neutralizing background of opposite charge. The 
Coulomb potential between two particles, at a distance r from one another, 
is, in two dimensions, given by 

q  n(i ) 
where L is a length scale. The dimensionless coupling constant is 7 = flq2 
where fl = 1/Ke T (KB is Boltzman's constant and T is the temperature). 

At the special value ~, = 2, the equilibrium statistical mechanics of the 
model can be worked out exactly/s) 

We begin with a finite system of N particles immersed in a disk of 
radius R filled with a background of uniform charge density -qPe.  Let 
Q=--qTzpbR 2 be the total charge of the background and let 
M =  - O / q  = zcpbR 2, which may be different from N. 

Our aim is to calculate Zll,A(N, M) and then to proceed to the ther- 
modynamic limit with M--  N + S, S finite and N ~ oo. 

For 7=2 ,  it has been shown (6) that PI,A=D(X) and Pll,AT =D(X ' y) 
are given by the following functions of the dimensionless variables 

z = ,,/-~b(x~ + ix2), z '=  x/-~b(Y~ + iy2) and M =  npbR2; namely 

~ (IzJ2) ' 
PI,A = D(IZl) = pbe - 1~12 (11 ) 

t=o 7(l+ 1, M) 

and 

Pll,AT = o(Z, z ' )=  --p2e (Iz12+lz'12) (12) 
h=o t2=o 7(ll + 1, M) 7(l :+ 1, M) 

where z* is the complex conjugate of z, [z]2= zz*, and where 7(/+ 1, M) is 
the incomplete gamma function defined by 

7(/+ 1, M ) =  e-Uuldu (13) 
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Taking advantage of the structure of the above correlation 
functions, we proceed with the calculation of Z11,A=D in the form given 

~ _ 1  t l ,  by Eq.(6). Setting X/ -~bXl=I (z+z*) ,  ~ y l  :(Z +Z ), and 
dx = Izl d Iz I dO/xp~, the first term of Eq. (6), called Z11,A1 =D, becomes 

2  z,2, 
~2M3 ~ Izl dlzl dO k Z /  e iz,2 Z 7( l+- l ,M) 

l = 0  

Noticing next that the cross terms of the integrand only contribute to 
the integral, we find, in using definition (13) 

1 % 1 7 ( / + 2 ,  M ) (14) 
Zll,A =D - -  ~zM t=0 7(l+ 1, M) 

Calling 2 Z11,A=D the second term of Eq. (6), and using Eq. (12) for 
r =D(Z, Z'), we find P l l ,A 

2_ (z + + 
Z21'A=D-- x3MJo fo Izl l z ' l d [ z l d l z ' l d O d O ' \ ~ / \ ~ j  

~ (zz,,),l N-~ (z'z*)'2 
�9 e x p (  - jzl 2 - Iz ' l  2 )  

h:o 7(/1 + 1, M) ,2~_o 7(/-~- L ~/)  

Integrating first over the angular variables and then over the radial 
ones, we find 

Z21,A = 1 N ' 7 2 (  11+12+12 t- I, M ) 

o -  2~Mh ' =o,/(l~+l,M) 7(12+l,M ) (612,h+~6l~,~2+,) 
r 

_ 1 N-2V 72(/+ 2, M) 

~rM t=Z"o 7(/+ 1, M) 7(/+ 2, M) 

- 1 ~  2 7(/+2'  M) (15) 
rcM l=o 7(l+ 1, M) 

Notice here the crucial action of the Kronecker 3 functions on the 
upper limit of summation in Eq. (15). 

Gathering the results of Eqs. (14) and (15), we find 

1 N~lT(/+2, M ) 1 % 2 7 ( l + 2 ,  M ) 
Z11,A=D(N, M)=~--~ ,=0 7(/+ 1, M) zcM ,=o y(l+ 1, M) 

111  M 
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This result is valid for any positive numbers N and M. For a neutral 
system M =  N and for N ~  oo the asymptotic expansion of Eq. (16) yields 

)~11,A=D(N,N)=l ( l _ x / T ~ + 2 + O ( N  3/2)) (17) 

This result proves that, in the thermodynamic limit of an infinite and 
neutral disk, X~I,A =D = rC 1, thus confirming the prediction of electrostatics. 

It is appropriate to recall here that if we had used, in Eq. (10), the 
truncated pair distribution function of the infinite O.C.P. at 7=2 ,  we 
would have obtained 

'fo )(" = 2 2 d2r r2p2 exp( - ~Pb r2) = ~ du u exp( - u) = 2--7 

which is the Stillinger-Lovett value. 
It is instructive to plot the N or size dependence of ZH,A--D(N, N) in 

order to estimate how close a finite system approaches the electrostatics 
limit. For numerical analysis, Eq. (16) is conveniently written in the form 

~ dx[e I X" x]N 
W, 11.A = D(N, N) = ~ dx[e(N/N 1)(1 - -x) .  x]N-- 1 (is) 

and the results are plotted in Fig. 1. The relatively slow approach to 
saturation, proportional to N 1/2= (npb) 1/2 R - l ,  is apparent. 

We can also investigate the influence of an excess or defect charge of 
the background. Setting M = N + S, the generalization of Eq. (18) reads 

(N) rCZI,,A=D(N, N+ S)= ~ ~+ 
~1 + S/N N o [e l -X 'x]  dr, 

S/N Ee(N/N--I)(1 X ) . x ] N  1 d x  
(19) 

and the results are also plotted on Fig. 1 for S = _10. 
We observe that for negative (positive) values of S the saturation is 

reached more (less) rapidly. 
On Fig. 2, numerical results, obtained by Monte Carlo simulation, 

are plotted for different values of y (7=0.5, 1,2,4, 10) and N 
( N =  10, 30, 44, 100, 176). It appears clearly that, for , /=2,  exact and 
numerical results are very close and that for the other values of 7 the sus- 
ceptibility exhibits a behavior similar to those of y = 2. This shows that, 
althought y -- 2 is the only exactly soluble case, the result of a susceptibility 
going like 1/n in the thermodynamic limit is valid for any 7- We observe 
finally that for values of 7 greater (smaller) than 2 the saturation is reached 
more (less) rapidly. 
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Fig. 1. Dielectric susceptibility of the O.C.P. on a disk at y = 2 as a function of the number 
of particles and for three values of the excess charge of the background. 
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Fig. 2. Dielectric susceptibility of the O.C.P. on a neutral disk as a [unction of thc number of 
particles and for five values of the coupling parameter ~. The full line corresponds to the 
soluble ease 7 = 2. 



204 Choquard, Piller, and Rentsch 

The results which are summarized on Figs. 1 and 2 demonstrate con- 
clusively that )~D tends toward the electrostatics limit. Yet, neither the exact 
calculation nor the numerical results reported above tell us why Xf~ is v 
times p v Z S L  " 

We believe that this difference is due to the fact that the susceptibility 
consists of two parts: a shape-independent bulk part and a shape-depen- 
dent surface part. Since, on the basis of Eq. (7), the susceptibility can be 
viewed as the second moment of a suitably defined truncated pair dis- 
tribution function, the question amounts to analyze the contributions from 
pairs of particles of given separation which belong to a surface layer or to 
the interior of a given domain A. This subject will be taken up in a 
forthcoming paper. 

Let us mention finally, that, as in the case of the disk geometry presen- 
ted above, the results of electrostatics concerning the susceptibility for a 
strip geometry can also be exactly reproduced by statistical mechanics. 
Indeed, it has been shown (7) that for the O.C.P. at y = 2 and for such a 
geometry, the one- and two-particle functions can be given explicitly. The 
details of the proof will be given up in a forthcoming paper. 

Here, we shall only briefly recall what is predicted by electrostatics 
concerning the susceptibility in the plasma state and we shall mention the 
results obtained by statistical mechanics. 

If we consider a strip geometry (v = 2, 3), electrostatics tells us that the 
susceptibility tensor is anisotropic. Therefore, we have to make a dis- 
tinction between the perpendicular component Z• and the parallel com- 
ponent(s) Zll of the susceptibility, whether the external electric field is 
applied perpendicularly to the surfaces of the strip or parallel. In the first 
case, the relation between the dielectric constant and the perpendicular 
component of the susceptibility is given b y  

e 1= 1 -  (v-- 1) 27rZ• v = 2 , 3  (20) 

and in the second case, we have 

e = 1 + (v  - 1 ) 2 n Z i  r v = 2, 3 (21) 

It follows from the previous relations that the values of the suscep- 
tibility in the plasma state are, respectively, given by 

and 

1 
Z~_ - v = 2 ,  3 ( 2 2 )  

(v - 1) 2~c 

Z~ ~ = ~ (23) 
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The proof of Eq. (23), using statistical mechanics, is obvious. Indeed, 
it has been shown rigorously (6) that, for the O.C.P. at 7---2 and along the 
surfaces of the strip the truncated two-particle distribution function decays 
only as an inverse power of the distance r, namely, as r -2  for a two-dimen- 
sional system. Then it is clear, using Eq. (7), that the parallel component(s) 
of the susceptibility diverge(s). 

As for the perpendicular component of the susceptibility, we prove 
that it is given by 

1 C 
Z• = 2re 2 K L '  L > 0 (24) 

where 

x=(2 P  'J2 c =  1+ >0  

and 2L is the distance between the surfaces of the strip. 
Thus we see that in the thermodynamic limit (L ~ ~ ) ,  Eq. (24) gives 

Eq. (22). 
Finally, let us point out that in the case of the strip geometry, the 

Stillinger-Lovett sum rule does not apply, since the susceptibility is 
anisotropic. 

After completion of this work, we learned that, in an unpublished 
work, B. Jancovici had also obtained the result given by Eq. (16). 
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